Skip to content

Virtual Background

Virtual backgrounds are becoming necessary nowadays in the video conferencing world. It allows us to replace our natural background with an image or a video. We can also upload our custom images in the background.

Dependencies

Add the dependencies for the Mediapipe Android libraries to the module’s app-level gradle file, which is usually app/build.gradle:

implementation 'com.google.mediapipe:tasks-vision:0.10.11'

Common WebRTC terms you should know

  1. VideoFrame: It contains the buffer of the frame captured by the camera device in I420 format.
  2. VideoSink: It is used to send the frame back to WebRTC native source.
  3. VideoSource: It reads the camera device, produces VideoFrames, and delivers them to VideoSinks.
  4. VideoProcessor: It is an interface provided by WebRTC to update videoFrames produced by videoSource .
  5. MediaStream: It is an API related to WebRTC which provides support for streaming audio and video data. It consists of zero or more MediaStreamTrack objects, representing various audio or video tracks

Apply in the code

Idea of virtual background in WebRTC

Getting the VideoFrame from WebRTC

videoSource?.setVideoProcessor(object : VideoProcessor {
override fun onCapturerStarted(success: Boolean) {
// Handle video capture start event
}
override fun onCapturerStopped() {
// Handle video capture stop event
}
@SuppressLint("LongLogTag")
@RequiresApi(Build.VERSION_CODES.N)
override fun onFrameCaptured(frame: VideoFrame) {
if (sink != null) {
val currentTime = System.currentTimeMillis()
val elapsedSinceLastProcessedFrame = currentTime - lastProcessedFrameTime
// Check if the elapsed time since the last processed frame is greater than the target interval
if (elapsedSinceLastProcessedFrame >= targetFrameInterval) {
// Process the current frame
lastProcessedFrameTime = currentTime
// Otherwise, perform segmentation on the captured frame and replace the background
val inputFrameBitmap: Bitmap? = videoFrameToBitmap(frame)
if (inputFrameBitmap != null) {
runBlocking {
if (backgroundBitmap != null) {
// Run segmentation in the background
val resizeBitmap = virtualBackground.resizeBitmapKeepAspectRatio(inputFrameBitmap, 512)
// Segment the input bitmap using the ImageSegmentationHelper
val frameTimeMs: Long = SystemClock.uptimeMillis()
bitmapMap[frameTimeMs] = CacheFrame(originalBitmap = resizeBitmap, originalFrame = frame)
imageSegmentationHelper?.segmentLiveStreamFrame(resizeBitmap, frameTimeMs)
} else {
val cacheFrame = CacheFrame(originalBitmap = inputFrameBitmap, originalFrame = frame)
bitmapMap[lastProcessedFrameTime] = cacheFrame
emitBitmapOnFrame(inputFrameBitmap, cacheFrame)
bitmapMap.remove(lastProcessedFrameTime)
}
}
} else {
Log.d(tag, "Convert video frame to bitmap failure")
}
}
}
}
override fun setSink(videoSink: VideoSink?) {
// Store the VideoSink to send the processed frame back to WebRTC
// The sink will be used after segmentation processing
sink = videoSink
}
})

Initialize Mediapipe Image Segmenter

this.imageSegmentationHelper = ImageSegmenterHelper(
context = context,
runningMode = RunningMode.LIVE_STREAM,
imageSegmenterListener = object : ImageSegmenterHelper.SegmenterListener {
override fun onError(error: String, errorCode: Int) {
// no-op
}
override fun onResults(resultBundle: ImageSegmenterHelper.ResultBundle) {
// Process the results after Mediapipe separates the background
}
})

Handle Person Mask from Mediapipe

override fun onResults(resultBundle: ImageSegmenterHelper.ResultBundle) {
val timestampMS = resultBundle.frameTime
val cacheFrame: CacheFrame = bitmapMap[timestampMS] ?: return
val maskFloat = resultBundle.results
val maskWidth = resultBundle.width
val maskHeight = resultBundle.height
val bitmap = cacheFrame.originalBitmap
val mask = virtualBackground.convertFloatBufferToByteBuffer(maskFloat)
// Convert the buffer to an array of colors
val colors = virtualBackground.maskColorsFromByteBuffer(
mask,
maskWidth,
maskHeight,
bitmap,
expectConfidence,
)
// Create the segmented bitmap from the color array
val segmentedBitmap = virtualBackground.createBitmapFromColors(colors, bitmap.width, bitmap.height)
if (backgroundBitmap == null) {
// If the background bitmap is null, return without further processing
return
}
// Draw the segmented bitmap on top of the background for human segments
val outputBitmap = virtualBackground.drawSegmentedBackground(segmentedBitmap, backgroundBitmap, cacheFrame.originalFrame.rotation)
if (outputBitmap != null) {
emitBitmapOnFrame(outputBitmap, cacheFrame)
}
bitmapMap.remove(timestampMS)
}

Draw segmented and background on canvas

/**
* Draw the segmentedBitmap on top of the backgroundBitmap with the background rotated by the specified angle (in degrees)
* and both background and segmentedBitmap flipped vertically to match the same orientation.
*
* @param segmentedBitmap The bitmap representing the segmented foreground with transparency.
* @param backgroundBitmap The bitmap representing the background image to be used as the base.
* @param rotationAngle The angle in degrees to rotate both the backgroundBitmap and segmentedBitmap.
* @return The resulting bitmap with the segmented foreground overlaid on the rotated and vertically flipped background.
* Returns null if either of the input bitmaps is null.
*/
fun drawSegmentedBackground(
segmentedBitmap: Bitmap?,
backgroundBitmap: Bitmap?,
rotationAngle: Int?
): Bitmap? {
if (segmentedBitmap == null || backgroundBitmap == null) {
return null
}
val isHorizontalFrame = rotationAngle == 0 || rotationAngle == 180
val outputBitmap = Bitmap.createBitmap(
segmentedBitmap.width,
segmentedBitmap.height,
Bitmap.Config.ARGB_8888
)
val canvas = Canvas(outputBitmap)
val paint = Paint(Paint.ANTI_ALIAS_FLAG)
val matrix = Matrix()
matrix.postRotate((rotationAngle?.toFloat() ?: 0f) - 180)
if (isHorizontalFrame) {
val scaleFitContain = Math.min(
segmentedBitmap.width.toFloat() / backgroundBitmap.width,
segmentedBitmap.height.toFloat() / backgroundBitmap.height
)
val scaledWidthFitContain = (backgroundBitmap.width * scaleFitContain).toInt()
val scaledHeightFitContain = (backgroundBitmap.height * scaleFitContain).toInt()
val rotatedBackgroundBitmap = Bitmap.createBitmap(
backgroundBitmap,
0,
0,
backgroundBitmap.width,
backgroundBitmap.height,
matrix,
true
)
val backgroundRect = Rect(
(segmentedBitmap.width - scaledWidthFitContain) / 2,
(segmentedBitmap.height - scaledHeightFitContain) / 2,
(segmentedBitmap.width + scaledWidthFitContain) / 2,
(segmentedBitmap.height + scaledHeightFitContain) / 2
)
canvas.drawBitmap(
rotatedBackgroundBitmap,
null,
backgroundRect,
paint
)
} else {
val newBackgroundWidth = Math.min(segmentedBitmap.width.toFloat(), segmentedBitmap.height.toFloat()).toInt()
val scaleFactor = (newBackgroundWidth.toFloat() / backgroundBitmap.width.toFloat())
val newBackgroundHeight = (backgroundBitmap.height * scaleFactor).toInt()
val scaledBackground = scaleBitmap(backgroundBitmap, newBackgroundWidth, newBackgroundHeight)
val rotatedBackgroundBitmap = Bitmap.createBitmap(
scaledBackground,
0,
0,
scaledBackground.width,
scaledBackground.height,
matrix,
true
)
canvas.drawBitmap(
rotatedBackgroundBitmap,
0f,
0f,
paint
)
}
canvas.drawBitmap(segmentedBitmap, 0f, 0f, paint)
return outputBitmap
}

Task benchmarks

Here’s the task benchmarks for the whole pipeline based on the above pre-trained models. The latency result is the average latency on Pixel 6 using CPU / GPU.

Model NameCPU LatencyGPU Latency
SelfieSegmenter (square)33.46ms35.15ms